Pydiverse Pipedag

A library for data pipeline orchestration optimizing high development iteration speed <u>https://pydiversepipedag.readthedocs.io/en/latest/</u>

Who's talking?

Martin Trautmann (@windiana42 on GitHub)

- IOI 2000 / Jugend forscht (<u>https://t.ly/DmvHG</u>)
- Electrical Engineering at KIT, Stanford University, and IMEC/KU-Leuven
 - Research: Mapping software descriptions on hardware targets + Transactional Memory
- QuantCo Optimizing high stakes business decisions by data analytics

QuantCo uses and contributes to open source

https://github.com/QuantCo

- conda-forge / pixi
- apache arrow / parquet / duckdb
- polars / polarify
- ONNX / spox / ndonnx / plonnx
- datajudge / sqlcompyr / tabular delta
- tabmat / glum / metalearners
- pydiverse

Agenda

- Introduction
- Iterating quickly between:
 - Showing example code of pipedag
 - Motivating important aspects of pipeline orchestration
- Summarizing how to achieve high iteration speed

What is pipeline orchestration?

- **Data pipeline:** a series of potentially expensive steps often built around training some machine learning model
- **Orchestration:** the process of executing steps of a pipeline
- The term *workflow engine* is sometimes used interchangeably
- **Data pipelines** often focus on transporting/transforming **tables** (table = rows conforming to typed columns)
- A dataframe would also classify as a table

Example Data Pipeline:

Pipedag and its competitive landscape

- How to get started:
 - \circ conda install pydiverse-pipedag # also works with pip
 - <u>https://pydiversepipedag.readthedocs.io/en/latest/quickstart.html</u>
- Features of pipedag:
 - Wraps many transformation coding styles with minimum boilerplate
 - Automatic cache invalidation
 - Supports high iteration speed (for insight generation loop)
- Competitive landscape:
 - airflow
 - prefect
 - o dagster
 - o dbt
 - hamilton
 - o ..

Hello World Pipedag

inputs

input_tables

features

join_tables

print_dataframe

import pandas as pd import sqlalchemy as sa

from pydiverse.pipedag import Flow, Stage, materialize

def main():

Define how the different tasks should be wired
with Flow("flow") as flow:
 with Stage("inputs"):
 names, ages = input tables()

with Stage("features"):
 joined_table = join_tables(names, ages)
 print_dataframe(joined_table)

flow.run()

@ materialize(version="1.0", nout=2)
def input_tables():
 names = pd.DataFrame({
 "id": [1, 2, 3],
 "name": ["Alice", "Bob", "Charlie"],
 })
 ages = pd.DataFrame({
 "id": [1, 2, 3],
 "age": [20, 40, 60],
 })
 return names, ages

@ materialize(lazy=True, input_type=sa.Table)
 def join_tables(names: sa.Alias, ages: sa.Alias):
 return (

sa.select(names.c.id, names.c.name, ages.c.age)
.join_from(names, ages, names.c.id == ages.c.id)

@materialize(input_type=pd.DataFrame)
def print_dataframe(df: pd.DataFrame):
 print(df)

Materialization / Dematerialization

The task decides the library X in which it wants to describe a data transformation:

```
@materialize(input_type=X)
def task(in_tbl: X):
    out_tbl = f(in_tbl)
    return out_tbl
```

This effectively does the following:

- Dematerialize input *in_tbl*
 - Dematerialize = Loading from Table Store
 - Table Store is often a SQL Database

• Run:

- out_tbl = f(in_tbl)
- Materialize output *out_tbl* as table
 - Materialize = Writing to Table Store

You can choose from many transformation languages

This is important to be able to wrap existing code in the form it already exists

https://github.com/Quantco/vectorization-tutorial/blob/main/vectorization06.ipynb

```
@ materialize(input_type=pd.DataFrame, version="1.0.0")
def task_pandas(a: pd.DataFrame, b: pd.DataFrame):
    return a.merge(b, on="pk", how="left").assign(x2=lambda df: df.x * df.x)
```

```
@ materialize(input_type=pl.LazyFrame, version=AUTO_VERSION)
def task_polars(a: pl.LazyFrame, b: pl.LazyFrame):
```

```
x = pl.col("x")
```

```
return a.join(b, on="pk", how="left").with_columns(x2=x * x)
```

```
@ materialize(input_type=pdt.SQLTableImpl, lazy=True)
def task_transform_sql(a: pdt.Table, b: pdt.Table):
    return a >> left_join(b, pk_match(a, b)) >> mutate(x2=b.x * b.x)
```

```
@ materialize(input_type=ibis.api.Table, lazy=True)
def task_ibis(a: ibis.api.Table, b: ibis.api.Table):
    return a.left_join(b, pk_match(a, b)).mutate(x2=b.x * b.x)
```

@ materialize(input_type=sa.Table, lazy=True)
def task_sqlalchemy(a: sa.Alias, b: sa.Alias):
 return sa.select(
 *a.c, *b.c,
 (b.c.x * b.c.x).label("x2"),
).select_from(a.outerjoin(b, pk_match(a, b)))

```
@ materialize(input_type=sa.Table, lazy=True)
def task_sql(a: sa.Alias, b: sa.Alias):
    return sa.text(f"""
        SELECT
            a.*, b.*, b.x * b.x AS x2
        FROM {ref(a)} AS a
        LEFT JOIN {ref(b)} AS b
        ON a.pk = b.pk
    """)
```


Data Pipeline in Code and Prose

```
with Flow() as flow:
    with Stage("raw_input"):
    raw_a, raw_b = read_input_data()
```

```
with Stage("economic_representation"):
econ = economic representation(raw a, raw b)
```

```
with Stage("features"):
```

features = compute_features(econ)

```
with Stage("model_training"):
```

input_data_train, target_train, encoding_parameters = model_encoding(econ, features, train=True

```
1
```

model, output_train = model_train(input_data_train, target_train)

```
with Stage("model_evaluation"):
    input_data_test, target_test, _ = model_encoding(
        econ, features, encoding_parameters=encoding_parameters
    )
    output_test = model_predict(model, input_data_test)
    evaluation_result = evaluate_model(output_test, target_test)
```


Parallelization under constant Change

Many parallelization techniques limit changes that can be made to algorithms – two stand out [Most data pipelines are not dealing with BIG Data]

SQL create table as select ...

> SQL can describe a transformation that is executed fully within the database and can be parallelized there

Full dataset in memory of high-RAM-machine (Pandas / Polars)

> Pandas/polars are dateframe libraries that are often used on >128GB RAM machines to train + evaluate models

Explorative SQL: Tracing down problems really fast

- In/Out diagnostic query: SELECT * FROM raw LEFT JOIN broken on raw.id=broken.id WHERE broken.col not in ('a', 'b', 'c') -- LIMIT 10
- Transformation diagnostic query
 -- CREATE TABLE broken AS
 SELECT TRIM(raw.x) as col
 ,raw2.y
 as irrelevant
 LEFT JOIN raw2
 on raw.id=raw2.id
 WHERE raw.z > 0

-- Debugging: AND TRIM(raw.x) not in ('a', 'b', 'c')

High development iteration speed

The faster the insight generation loop, the better the models you may build

Use of IDEs / Debuggers in Data Science work

• We believe that Data Scientists and Engineers should work with same tools

「Colum

 \odot

('id',

igInteger(), table=<input_tables_5764xpwcsbc5v3ijboxc_0000>), Column('name',

Pipeline instances (Manifestations with different input)

- Full / Midi / Mini Datasets
- Per user / Team shared
- Fresh inputs / Stable inputs

Automatic Cache Invalidation

- Run what needs rerunning
- Manual updating reduces pipeline instances you can manage

```
@ materialize(version="1.0")
def input_table():
    return pd.DataFrame({
        "id": [1, 2, 3],
        "age": [20, 40, 60],
    })
```

```
@ materialize(lazy=True, input_type=sa.Table)
def join_tables(names, ages):
    return sa.select(names, ages.c.age).join_from(
        names, ages, names.c.i == ages.c.id
    )
```

@ materialize(version=AUTO_VERSION, input_type=pl.LazyFrame)
def enrich(ages):

```
return ages.with_columns(age2=pl.col("age") * 2)
```

- version="1.0" ⇒ Manual versioning
 - We considered automatic python code change tracing too high a penalty when modifying shared code

- lazy=True ⇒ Automatic versioning
 - \circ $\hfill The code producing queries always runs$
 - Queries will only be executed when they change

version=AUTO_VERSION ⇒ Automatic versioning

- The code will be executed twice:
 - Once with empty input data frames to avoid loading time
 - If lazy expression tree changed, again with full input

Gradual Improvement of code bases

@ materialize(lazy=True) def all_tbls(): return RawSql(f""" CREATE TABLE tbl_a AS SELECT 1;

with Flow() as flow: with Stage("s0"): all_tbls() @materialize(lazy=True)
def get_tbl_a():
 return sa.select("SELECT 1")

@materialize(input_type=sa.Table, lazy=True)
def get_out(a: sa.Alias):

with Flow() as flow: with Stage("s0"): tbl_a = get_tbl_a() out = get_out(tbl_a) @ materialize(lazy=True)
def get_tbl_a():
 return sa.select("SELECT 1")

@ materialize(input_type=pdt.SQLTableImpl, lazy=True)
def get_out(a: pdt.Tablo):
 reture a >> mutate(x2 = a.x * a.x)

with Flow() as flow: with Stage("s0"): tbl_a = get_tbl_a() out = get_out(tbl_a)

Summary: High iteration speed in insight generating loop

Multiple pipeline instances (mini/midi/full) to develop and push fast

IDE support with debugger on all (mini - full) pipeline instances

Automatic cache invalidation: only rerun what is affected by changes

Explorative SQL / Schema swapping / stage level transactionality

Gradual improvement of code bases (i.e. Raw SQL -> programmatic SQL)

Summary: High iteration speed in insight generating loop

⇒ Pydiverse pipedag provides you all the above with a syntax that allows you to focus on your main task:

```
# Writing data transformation code
@materialize(input_type=X)
def task(in_tbl: X):
    out_tbl = f(in_tbl)
    return out_tbl
```


GitHub / Feature requests

Pipedag docs

These slides

Notebook with supported Libraries

QuantCo - Overview

Company	Started in Cambridge, MA, by PhDs from Harvard and Stanford, QuantCo comprises more than 200 professionals with extensive quantitative, engineering, and business experience
Locations	Boston (HQ), San Francisco, Berlin, Hamburg, London, Munich, Zürich, Karlsruhe
Value Proposition	 QuantCo enters long-term partnerships with its clients to identify and realize customized data-driven solution with the most significant economic impact and potential: 1. Rigorous focus on value drivers in the business model 2. Close collaboration with the organization 3. Unique combination of econometric, statistical, and machine learning skills
Business Model	Entrepreneurial deal structures align the incentives of QuantCo and its clients, enabling the long-term collaboration needed to realize the full potential from analytical solutions

QuantCo - People & Projects

Deep Learning at Quant Co with DocAI & Virdx

QuantCo is constantly looking for new colleagues to join us.

Internships

We offer off-cycle and summer internships for bachelor, master and PhD students throughout the entire year in data science and software engineering.

Full-time positions

We are currently focusing on our European offices. We offer positions in data science, software and machine learning engineering (among others).

Contact

carolin.thomas@quantco.com; please attach your CV and a recent copy of your transcript to an informal email (no cover letter needed)

Quantco

Schema swapping / Stage level transactionality

Future developments

- Batched execution of dataframe tasks (with nice syntax)
- Extraction of production pipeline subgraph
 - Avoid writing back to table store (i.e. SQL Database) when it is not desirable
 - Arrow / Parquet backed table store
 - Syntax improvements for Arrow backed interactions of Pandas / Polars / DuckDB
- Pydiverse transform offers one nice syntax to describe data transformation that execute on SQL, dataframes, and ONNX
- Please reach out for your wishlist: <u>https://github.com/pydiverse/pydiverse.pipedag/issues</u>
- Contributions welcome!

Pipeline Template

Differences to pipeline shown in prev. slides:

- Early cleaning stage added
- Table dictionaries on highest level
- Test/train set split is computed early but tables included data about both (dangerous but convenient)
- CalibrationState offers communication link between training and production runs
- run_id related function calls can document runs in experiment tracking tools (ML Flow)
- InOutSpecification carries information about how to carve out subtree that runs in production (from input, ignore, const to output)

```
def get_pipeline(attrs):
  with Flow("typical_pipeline") as flow:
    with Stage("01_raw_input"):
       raw tbls = read input data()
    with Stage("02_early_cleaning"):
       clean tbls = clean(raw tbls)
    with Stage("03_economic_representation"):
       train_test_set = mark_train_test_set(clean_tbls, **attrs["train_test_set"])
       tbls = economic_representation(clean_tbls, train_test_set)
    with Stage("04_features"):
       feature_tbls = features(tbls, train_test_set)
       # calibration state holds dictionaries of parameters and parameter tables
       # which are computed during training based on train set but already applied
       calibration state = CalibrationState()
       feature tbls2 = calibrated features(tbls. feature tbls. train test set, calibration state)
       feature_tbls.update(feature_tbls2) # will be executed lazily in consumer tasks
    with Stage("05 model training"):
       run id = get run id()
       input_data_train, target_train, encoding_paramters = model_encoding(
         tbls, feature tbls, train test set, run id, train=True
       model, model run id, output train = model train(input data train, target train, run id)
    with Stage("06 model evaluation"):
       run id = get run id(run id) # get a run id if only evaluation is running
       document_link(run_id, model_run_id)
       input_data_test, target_test, _ = model_encoding(
         tbls, feature_tbls, train_test_set, run_id, encoding_parameters=encoding_paramters
       output test = model predict(model, input data test, run id)
       evaluation result = evaluate model(output test, target test, run id)
       document_evaluation(evaluation_result, run_id)
  prod_in_out_spec = InOutSpecification(
    input=clean tbls, ignore=[train test set, run id],
    const=[model, model_run_id, feature_parameters, parameter_tbls, encoding_parameters], output=output_test,
  return flow, prod in out spec
```

High development iteration speed

You should always be able to turn the best possible representation upside down (Rely on CI not stability)

Recomputation as needed