
Pydiverse Pipedag

A library for data pipeline orchestration optimizing high development iteration speed

https://pydiversepipedag.readthedocs.io/en/latest/

https://pydiversepipedag.readthedocs.io/en/latest/

Who’s talking?

Martin Trautmann (@windiana42 on GitHub)

● IOI 2000 / Jugend forscht (https://t.ly/DmvHG)

● Electrical Engineering at KIT, Stanford University, and IMEC/KU-Leuven

● Research: Mapping software descriptions on hardware targets + Transactional Memory

● QuantCo – Optimizing high stakes business decisions by data analytics

2

https://github.com/windiana42
https://t.ly/DmvHG

QuantCo uses and contributes to open source

https://github.com/QuantCo

● conda-forge / pixi

● apache arrow / parquet / duckdb

● polars / polarify

● ONNX / spox / ndonnx / plonnx

● datajudge / sqlcompyr / tabular delta

● tabmat / glum / metalearners

● pydiverse

https://github.com/QuantCo

Agenda

● Introduction

● Iterating quickly between:
○ Showing example code of pipedag

○ Motivating important aspects of pipeline orchestration

● Summarizing how to achieve high iteration speed

What is pipeline orchestration?

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

● Data pipeline: a series of potentially expensive steps

often built around training some machine learning model

● Orchestration: the process of executing steps of a

pipeline

● The term workflow engine is sometimes used

interchangeably

● Data pipelines often focus on transporting/transforming

tables (table = rows conforming to typed columns)

● A dataframe would also classify as a table

Example Data Pipeline:

Pipedag and its competitive landscape

● How to get started:
○ conda install pydiverse-pipedag # also works with pip

○ https://pydiversepipedag.readthedocs.io/en/latest/quickstart.html

● Features of pipedag:
○ Wraps many transformation coding styles with minimum boilerplate

○ Automatic cache invalidation

○ Supports high iteration speed (for insight generation loop)

● Competitive landscape:
○ airflow

○ prefect

○ dagster

○ dbt

○ hamilton

○ …

https://pydiversepipedag.readthedocs.io/en/latest/quickstart.html

Hello World Pipedag

import pandas as pd

import sqlalchemy as sa

from pydiverse.pipedag import Flow, Stage,

materialize

def main():

Define how the different tasks should be wired

with Flow("flow") as flow:

with Stage("inputs"):

names, ages = input_tables()

with Stage("features"):

joined_table = join_tables(names, ages)

print_dataframe(joined_table)

flow.run()

@materialize(version="1.0", nout=2)

def input_tables():

names = pd.DataFrame({

"id": [1, 2, 3],

"name": ["Alice", "Bob", "Charlie"],

})

ages = pd.DataFrame({

"id": [1, 2, 3],

"age": [20, 40, 60],

})

return names, ages

@materialize(lazy=True, input_type=sa.Table)

def join_tables(names: sa.Alias, ages: sa.Alias):

return (

sa.select(names.c.id, names.c.name, ages.c.age)

.join_from(names, ages, names.c.id == ages.c.id)

)

@materialize(input_type=pd.DataFrame)

def print_dataframe(df: pd.DataFrame):

print(df)

Materialization / Dematerialization

The task decides the library X in which it

wants to describe a data transformation:

@materialize(input_type=X)

def task(in_tbl: X):

out_tbl = f(in_tbl)

return out_tbl

This effectively does the following:

● Dematerialize input in_tbl

○ Dematerialize = Loading from Table Store

○ Table Store is often a SQL Database

● Run:

out_tbl = f(in_tbl)

● Materialize output out_tbl as table

○ Materialize = Writing to Table Store

You can choose from many transformation languages
This is important to be able to wrap existing code in the form it already exists

https://github.com/Quantco/vectorization-tutorial/blob/main/vectorization06.ipynb

@materialize(input_type=pd.DataFrame, version="1.0.0")

def task_pandas(a: pd.DataFrame, b: pd.DataFrame):

return a.merge(b, on="pk", how="left").assign(x2=lambda df: df.x * df.x)

@materialize(input_type=pl.LazyFrame, version=AUTO_VERSION)

def task_polars(a: pl.LazyFrame, b: pl.LazyFrame):

x = pl.col("x")

return a.join(b, on="pk", how="left").with_columns(x2=x * x)

@materialize(input_type=pdt.SQLTableImpl, lazy=True)

def task_transform_sql(a: pdt.Table, b: pdt.Table):

return a >> left_join(b, pk_match(a, b)) >> mutate(x2=b.x * b.x)

@materialize(input_type=sa.Table, lazy=True)

def task_sqlalchemy(a: sa.Alias, b: sa.Alias):

return sa.select(

*a.c, *b.c,

(b.c.x * b.c.x).label("x2"),

).select_from(a.outerjoin(b, pk_match(a, b)))

@materialize(input_type=sa.Table, lazy=True)

def task_sql(a: sa.Alias, b: sa.Alias):

return sa.text(f"""

SELECT

a.*, b.*, b.x * b.x AS x2

FROM {ref(a)} AS a

LEFT JOIN {ref(b)} AS b

ON a.pk = b.pk

""")

@materialize(input_type=ibis.api.Table, lazy=True)

def task_ibis(a: ibis.api.Table, b: ibis.api.Table):

return a.left_join(b, pk_match(a, b)).mutate(x2=b.x * b.x)

https://github.com/Quantco/vectorization-tutorial/blob/main/vectorization06.ipynb

Data Pipeline in Code and Prose

with Flow() as flow:
with Stage("raw_input"):

raw_a, raw_b = read_input_data()

with Stage("economic_representation"):
econ = economic_representation(raw_a, raw_b)

with Stage("features"):
features = compute_features(econ)

with Stage("model_training"):
input_data_train, target_train, encoding_parameters = model_encoding(

econ, features, train=True
)
model, output_train = model_train(input_data_train, target_train)

with Stage("model_evaluation"):

input_data_test, target_test, _ = model_encoding(
econ, features, encoding_parameters=encoding_parameters

)
output_test = model_predict(model, input_data_test)
evaluation_result = evaluate_model(output_test, target_test)

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

Parallelization under constant Change
Many parallelization techniques limit changes that can be made to algorithms – two stand out
[Most data pipelines are not dealing with BIG Data]

11

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

SQL
create table as select …

Full dataset in memory
of high-RAM-machine

(Pandas / Polars)

SQL can describe a
transformation that
is executed fully
within the database
and can be
parallelized there

Pandas/polars are
dateframe libraries
that are often used
on >128GB RAM
machines to train +
evaluate models

Explorative SQL: Tracing down problems really fast

● In/Out diagnostic query:
SELECT * FROM raw

LEFT JOIN broken on raw.id=broken.id

WHERE broken.col not in ('a', 'b', 'c’)

-- LIMIT 10

● Transformation diagnostic query
-- CREATE TABLE broken AS

SELECT TRIM(raw.x) as col

,raw2.y as irrelevant

LEFT JOIN raw2

on raw.id=raw2.id

WHERE raw.z > 0

-- Debugging:

AND TRIM(raw.x) not in ('a', 'b', 'c')

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

⇐ Table raw

⇐ Table broken

High development iteration speed
The faster the insight generation loop, the better the models you may build

Explore data

Build/Improve
Data Pipeline +

Features

Train
Models

Improve
Economic

understanding

SQL

Pandas/
Polars

Production
Service

Live
Monitoring

Automatic
Retraining

Production integration is
important but should
not be traded against

worse model

Use of IDEs / Debuggers in Data Science work

● We believe that Data Scientists and Engineers should work with same tools

Pipeline instances (Manifestations with different input)

● Full / Midi / Mini Datasets

● Per user / Team shared

● Fresh inputs / Stable inputs

Feature
Increment 1

Feature
Increment 2

Full

team shared

Stable

Full

team shared

Fresh

Full

team shared

Stable

minutes hours

Mini

per user

Stable

Midi

per user

Stable

Push

to main

branch

Some

time

later…

Mini

per user

Stable

Midi

per user

Stable

Push

to main

branch

Some

time

later…

Automatic Cache Invalidation

● Run what needs rerunning

● Manual updating reduces pipeline instances you can manage

@materialize(version="1.0")

def input_table():

return pd.DataFrame({

"id": [1, 2, 3],

"age": [20, 40, 60],

})

@materialize(lazy=True, input_type=sa.Table)

def join_tables(names, ages):

return sa.select(names, ages.c.age).join_from(

names, ages, names.c.i == ages.c.id

)

@materialize(version=AUTO_VERSION, input_type=pl.LazyFrame)

def enrich(ages):

return ages.with_columns(age2=pl.col("age") * 2)

● version="1.0” ⇒ Manual versioning
○ We considered automatic python code change tracing too high a

penalty when modifying shared code

● lazy=True⇒ Automatic versioning
○ The code producing queries always runs

○ Queries will only be executed when they change

● version=AUTO_VERSION ⇒ Automatic versioning
○ The code will be executed twice:

■ Once with empty input data frames to avoid loading time

■ If lazy expression tree changed, again with full input

Gradual Improvement of code bases

@materialize(lazy=True)

def all_tbls():

return RawSql(f"""

CREATE TABLE tbl_a AS

SELECT 1;

CREATE TABLE out AS

SELECT

a.*, a.x * a.x AS x2

FROM tbl_a AS a;

""")

with Flow() as flow:

with Stage("s0"):

all_tbls()

@materialize(lazy=True)

def get_tbl_a():

return sa.select("SELECT 1")

@materialize(input_type=sa.Table, lazy=True)

def get_out(a: sa.Alias):

return sa.text(f"""

SELECT

a.*, a.x * a.x AS x2

FROM {ref(a)} AS a

""")

with Flow() as flow:

with Stage("s0"):

tbl_a = get_tbl_a()

out = get_out(tbl_a)

@materialize(lazy=True)

def get_tbl_a():

return sa.select("SELECT 1")

@materialize(input_type=pdt.SQLTableImpl, lazy=True)

def get_out(a: pdt.Table):

return a >> mutate(x2 = a.x * a.x)

with Flow() as flow:

with Stage("s0"):

tbl_a = get_tbl_a()

out = get_out(tbl_a)

Summary: High iteration speed in insight generating loop

● Multiple pipeline instances (mini/midi/full) to develop and push fast

● IDE support with debugger on all (mini - full) pipeline instances

● Automatic cache invalidation: only rerun what is affected by changes

● Explorative SQL / Schema swapping / stage level transactionality

● Gradual improvement of code bases (i.e. Raw SQL -> programmatic SQL)

Summary: High iteration speed in insight generating loop

⇒ Pydiverse pipedag provides you all the above with a syntax that allows you to

focus on your main task:

Writing data transformation code

@materialize(input_type=X)

def task(in_tbl: X):

out_tbl = f(in_tbl)

return out_tbl

Q & A

20

Pipedag docs

Notebook with

supported Libraries

These slides

GitHub /

Feature requests

Company Started in Cambridge, MA, by PhDs from Harvard and Stanford, QuantCo comprises more

than 200 professionals with extensive quantitative, engineering, and business experience

Locations Boston (HQ), San Francisco, Berlin, Hamburg, London, Munich, Zürich, Karlsruhe

Value Proposition QuantCo enters long-term partnerships with its clients to identify and realize customized

data-driven solution with the most significant economic impact and potential:

1. Rigorous focus on value drivers in the business model

2. Close collaboration with the organization

3. Unique combination of econometric, statistical, and machine learning skills

Business Model Entrepreneurial deal structures align the incentives of QuantCo and its clients, enabling

the long-term collaboration needed to realize the full potential from analytical solutions

QuantCo - Overview

QuantCo - People & Projects

QuantCo founded in Dec. 2016

Intelligent orientation service for

insurance claims
Founders aim to implement
econometric solutions in corporate
settings

Berlin KarlsruheZurich

Hamburg

EssenLondon

Boston

Munich

San Francisco

Cologne

Tokyo

70
40

100

5

150 45

Employees # SWE

2016 2017

2021

2022

2023

2018
2019/20

Health insurance fraud

detection algorithm.

Open source: Tabmat and

GLUM

Pricing projects in SF

Deep Learning at QuantCo with

DocAI & Virdx

Healthcare product Aramis goes

live at 3 clients

P&C pricing engines Open source: Pydiverse

Pilot pricing and demand

forecasting projects

170

2024

Data Strategy

at global insurer

60

QuantCo is constantly looking for new colleagues to join us.

Internships We offer off-cycle and summer internships for bachelor, master and PhD students

throughout the entire year in data science and software engineering.

Full-time positions We are currently focusing on our European offices. We offer positions in data science, software and

machine learning engineering (among others).

Contact carolin.thomas@quantco.com; please attach your CV and a recent copy of your transcript to an

informal email (no cover letter needed)

mailto:carolinthomas@quantco.com

Schema swapping / Stage level transactionality

Feature
Increment 1

F
u

ll
S

ta
b

le

te
a

m
 s

h
a

re
d

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Temporary Schema
for new version of tables

Full

team shared

Stable

Data Scientist

Explorative SQL
Pipeline RunSwap

Mini

per user

Stable

Midi

per user

Stable

Push

to main

branch

Future developments

● Batched execution of dataframe tasks (with nice syntax)

● Extraction of production pipeline subgraph
○ Avoid writing back to table store (i.e. SQL Database) when it is not desirable

○ Arrow / Parquet backed table store

○ Syntax improvements for Arrow backed interactions of Pandas / Polars / DuckDB

● Pydiverse transform offers one nice syntax to describe data transformation

that execute on SQL, dataframes, and ONNX

● Please reach out for your wishlist:

https://github.com/pydiverse/pydiverse.pipedag/issues

● Contributions welcome!

https://github.com/pydiverse/pydiverse.pipedag/issues

Pipeline Template

Differences to pipeline shown in prev. slides:

● Early cleaning stage added

● Table dictionaries on highest level

● Test/train set split is computed early but

tables included data about both

(dangerous but convenient)

● CalibrationState offers communication link

between training and production runs

● run_id related function calls can document

runs in experiment tracking tools (ML Flow)

● InOutSpecification carries information

about how to carve out subtree that runs in

production (from input, ignore, const to output)

def get_pipeline(attrs):

with Flow("typical_pipeline") as flow:

with Stage("01_raw_input"):

raw_tbls = read_input_data()

with Stage("02_early_cleaning"):

clean_tbls = clean(raw_tbls)

with Stage("03_economic_representation"):

train_test_set = mark_train_test_set(clean_tbls, **attrs["train_test_set"])

tbls = economic_representation(clean_tbls, train_test_set)

with Stage("04_features"):

feature_tbls = features(tbls, train_test_set)

calibration_state holds dictionaries of parameters and parameter tables

which are computed during training based on train set but already applied

to rows of test set. For deployment, the calibration_state will be loaded

and injected as constant input into the pipeline subgraph that runs in

production.

calibration_state = CalibrationState()

feature_tbls2 = calibrated_features(tbls, feature_tbls, train_test_set, calibration_state)

feature_tbls.update(feature_tbls2) # will be executed lazily in consumer tasks

with Stage("05_model_training"):

run_id = get_run_id()

input_data_train, target_train, encoding_paramters = model_encoding(

tbls, feature_tbls, train_test_set, run_id, train=True

)

model, model_run_id, output_train = model_train(input_data_train, target_train, run_id)

with Stage("06_model_evaluation"):

run_id = get_run_id(run_id) # get a run id if only evaluation is running

document_link(run_id, model_run_id)

input_data_test, target_test, _ = model_encoding(

tbls, feature_tbls, train_test_set, run_id, encoding_parameters=encoding_paramters

)

output_test = model_predict(model, input_data_test, run_id)

evaluation_result = evaluate_model(output_test, target_test, run_id)

document_evaluation(evaluation_result, run_id)

prod_in_out_spec = InOutSpecification(

input=clean_tbls, ignore=[train_test_set, run_id],

const=[model, model_run_id, feature_parameters, parameter_tbls, encoding_paramters], output=output_test,

)

return flow, prod_in_out_spec

High development iteration speed
You should always be able to turn the best possible representation upside down (Rely on CI not stability)

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

Ingested raw data

Best possible representation
to reason economically

Feature Enrichment

Model Training

Evaluations

Recomputation as needed

	Slide 1: Pydiverse Pipedag A library for data pipeline orchestration optimizing high development iteration speed https://pydiversepipedag.readthedocs.io/en/latest/
	Slide 2: Who’s talking?
	Slide 3: QuantCo uses and contributes to open source
	Slide 4: Agenda
	Slide 5: What is pipeline orchestration?
	Slide 6: Pipedag and its competitive landscape
	Slide 7: Hello World Pipedag
	Slide 8: Materialization / Dematerialization
	Slide 9: You can choose from many transformation languages This is important to be able to wrap existing code in the form it already exists
	Slide 10: Data Pipeline in Code and Prose
	Slide 11: Parallelization under constant Change Many parallelization techniques limit changes that can be made to algorithms – two stand out [Most data pipelines are not dealing with BIG Data]
	Slide 12: Explorative SQL: Tracing down problems really fast
	Slide 13: High development iteration speed The faster the insight generation loop, the better the models you may build
	Slide 14: Use of IDEs / Debuggers in Data Science work
	Slide 15: Pipeline instances (Manifestations with different input)
	Slide 16: Automatic Cache Invalidation
	Slide 17: Gradual Improvement of code bases
	Slide 18: Summary: High iteration speed in insight generating loop
	Slide 19: Summary: High iteration speed in insight generating loop
	Slide 20: Q & A
	Slide 21: QuantCo - Overview
	Slide 22: QuantCo - People & Projects
	Slide 23: QuantCo is constantly looking for new colleagues to join us.
	Slide 24: Schema swapping / Stage level transactionality
	Slide 25: Future developments
	Slide 26: Pipeline Template
	Slide 27: High development iteration speed You should always be able to turn the best possible representation upside down (Rely on CI not stability)

